

Addressing the Increased Risk of Lung Cancer in People with HIV

Matthew Triplette, MD, MPH

Associate Professor Division of Pulmonary, Critical Care and Sleep Medicine, UW Division of Public Health Science, Fred Hutchinson Cancer Center

August 7, 2023

Disclaimer

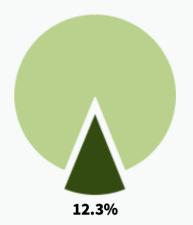
Funding for this presentation was made possible [in part, if applicable] by U10HA29296 from the Human Resources and Services Administration HIV/AIDS Bureau. The views expressed do not necessarily reflect the official policies of the Department of Health and Human Services nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government. Any trade/brand names for products mentioned during this presentation are for training and identification purposes only.

None.

1.Define both the risk and risk factors for lung cancer in people with HIV

2. Describe approaches to both primary and secondary prevention of lung cancer in people with HIV

3. Understand approaches to tailor smoking cessation and screening approaches for a population of people with HIV


Epidemiology of lung cancer in PWH

Impact of Lung Cancer

	Common Types of Cancer	Estimated New Cases 2022	Estimated Deaths 2022
1.	Breast Cancer (Female)	287,850	43,250
2.	Prostate Cancer	268,490	34,500
3.	Lung and Bronchus Cancer	236,740	130,180
4.	Colorectal Cancer	151,030	52,580
5.	Melanoma of the Skin	99,780	7,650
6.	Bladder Cancer	81,180	17,100
7.	Non-Hodgkin Lymphoma	80,470	20,250
8.	Kidney and Renal Pelvis Cancer	79,000	13,920
9.	Uterine Cancer	65,950	12,550
10.	Pancreatic Cancer	62,210	49,830

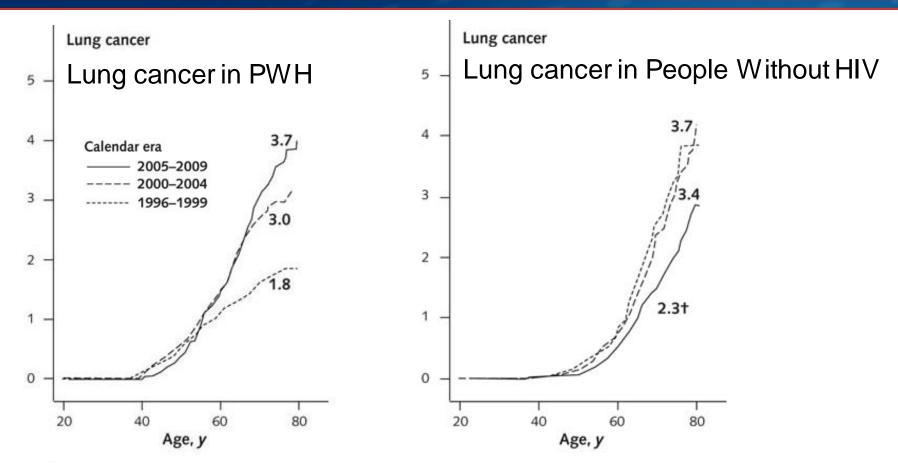
Lung and bronchus cancer represents 12.3% of all new cancer cases in the U.S.

Lung cancer is by far the leading cause of cancer death in the US

https://seer.cancer.gov/statfacts/html/lungb.html

Impact of lung cancer in PWH

- Lung cancer is the most common cause of NADC
- Leading cause of cancer death
- Leading cause of death in some populations
- Cumulative incidence has increased with improved HIV management



Incidence of lung cancer in PWH

Cancer Type	Observed Cases	SIR (95% CI)
All cancers	21,294	1.69 (1.67-1.72)
AIDS-defining cancers	6,384	14.0 (13.6-14.3)
Non-AIDS-defining cancers	14,344	1.21 (1.19-1.23)
Virus-unrelated non-AIDS defining cancer	10,200	0.92 (0.90-0.94)
Lung cancer	2,475	1.97 (1.89-2.05)

Incidence of lung cancer in PWH

In 1996-2009 era, cumulative incidence is 3.4% by age of 75

• 2.8% in people without HIV

Silverberg, et.al. Ann Int Med 2015

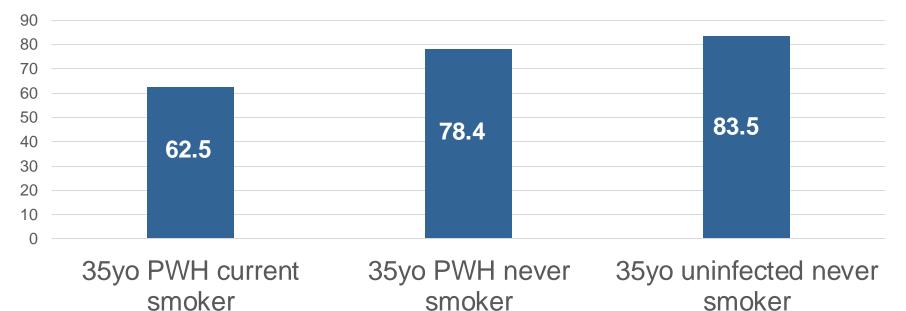
Risk of lung cancer in PWH

- Increased risk is largely driven by smoking behavior
 - An estimated 35-50% of PWH in Western countries currently smoke (~60% former)
 - Approximately 40% of PWH in US vs. 20% of adults without HIV
- HIV is an independent risk factor for lung cancer which has been confirmed in several studies

Risk of lung cancer in PWH

Adjusted IRR of lung cancer

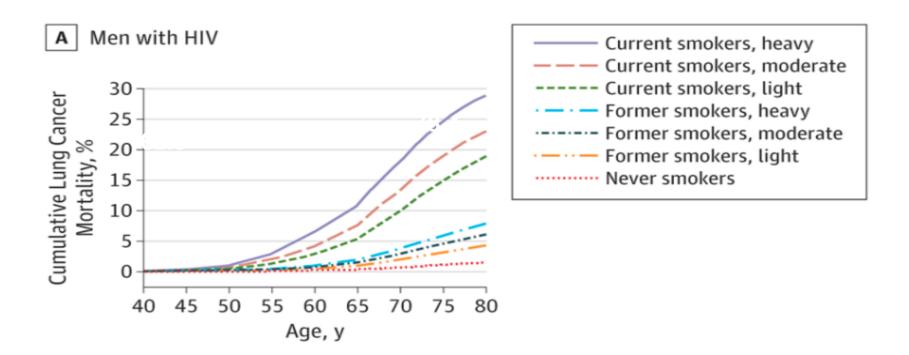
Characteristic	IRR	95% CI
HIV Infection	1.7	1.5-1.9
Age (per 10-year increase)	2.3	2.2-2.5
Former smoker (compared to never)	3.0	2.2-4.1
Current smoker (compared to never)	6.3	4.7-8.4
COPD	1.9	1.5-2.3
Previous bacterial pneumonia	1.5	1.1-2.0


Sigel, et.al. AIDS 2012

Primary Prevention: Smoking Cessation

Impact of smoking in PWH

Life expectancy by HIV and smoking status, Denmark



Sigel, et.al. AIDS 2012

Impact of smoking in PWH

Impact of cessation on lung cancer risk

Reddy et.al. JAMA Int Med 2017

Impact of smoking in PWH

- PWH who smoke are 6-13x more likely to die from lung cancer than AIDS-related causes
- Quitting by age 40 can result in drastic reduction in lung cancer mortality
 - 40yo heavy smoking man who continues to smoke has a 29% cumulative lung cancer mortality by age 80
 - Drops to 8% if he quits at age 40
- Of US PWH, if 20% of current smokers quit, 6900 deaths (12% of total lung cancer deaths) could be avoided

Lessons from cessation studies in PWH

- Both standard pharmacologic therapies and NRT are safe and effective in PWH
 - Phase 3 trials of varenicline in US and France
- Limited studies of interventions specific to PWH
 - Improved efficacy of intensive interventions
 - Combining behavioral support and pharmacotherapy
 - Patient motivation likely a key component of cessation
- Increasing interest in "vaping" as a harm-reduction strategy
- Consider your patients' unique identities, circumstances, and motivations

Secondary Prevention: Lung Cancer Screening

Evidence for Lung Cancer Screening

Comparison of outcomes: National Lung Screening Trial

Trial Arm	Person Years (py)	Lung Cancer Deaths	Lung Cancer Mortality per 100,000 py	Reduction in Lung Cancer Mortality (%)	95% CI	p Value
LDCT	144,103	356	247	20.0	6.8 to 26.7	0.004
CXR	143,368	443	309			
TrialArma	Dereen	Deatha	All-cause	Reduction in		n Value
Trial Arm	Person Years (py)	Deaths	Mortality per 100,000 py	All-Cause Mortality (%)	95% CI	p Value
LDCT		1877	Mortality per	All-Cause	95% CI 1.2-13.6	0.02

NLST, et.al. NEJM2011

Evidence for Lung Cancer Screening

Comparison of outcomes: National Lung Screening Trial

LDCT			CXR			
	Number Screened	Number Positive	Percent Positive	Number Screened	Number Positive	Percent Positive
Screening Round 1	26,309	7191	27.3	26,035	2387	9.2
Screening Round 2	24,715	6901	27.9	24,089	1482	6.2
Screening Round 3	24,102	4054	16.8	23,346	1174	5.0
All Screening Rounds	75,126	18,146	24.2	73,470	5043	6.9

Benefits and Harms in PWH

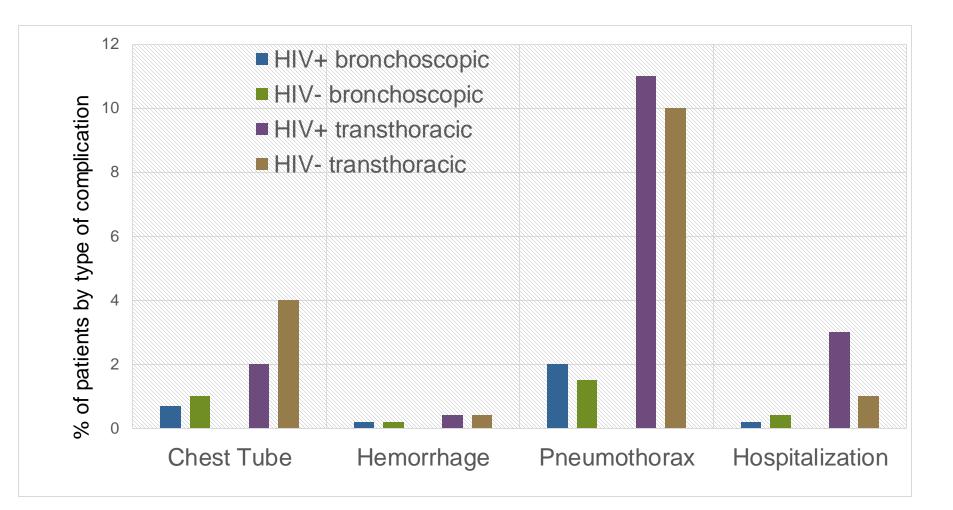
→Increased incidence of lung cancer
→Younger age at diagnosis
→increased tobacco use →More competing risks (+)
 →Potential increase in false positives (-)
 →Increased diagnostic and therapeutic harms (-)

NLST, et.al. NEJM2011 Pinsky, et.al. Ann Int Med2015

Screening Trials in PWH

Characteristic	JHU study	ARNS French study
<u>Population</u>	 - 224 PWH: ≥ 25 years old current or former smokers ≥ 20 pack-years 	 - 442 PWH: ≥ 40 years old current smokers (or quit in last 3 years) ≥ 20 pack-years current CD4 ≥ 100 cells/µL
<u>Intervention</u>	 5 annual rounds of screening with LDCT algorithm for management of findings 	 single chest CT with 2 years of follow-up (dosage in-between LDCT and diagnostic) algorithm for management of findings
<u>Control</u>	None	None
<u>Outcomes</u> Positive findings Lung cancer cases Other	48 (21%) 1 Poor adherence to subsequent scans	94 (21%) 10 18 diagnostic procedures with no AEs

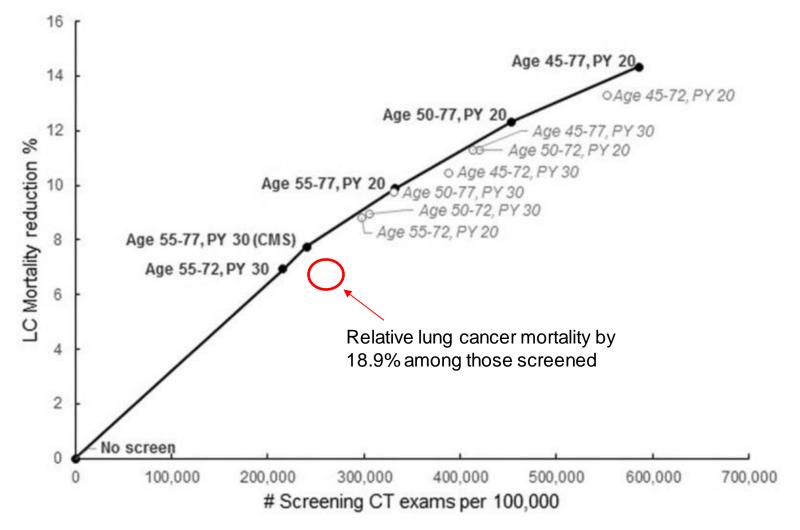
False positives in PWH


Factors associated with non-calcified nodules

Predictor	Odds Ratio	95% CI		
HIV status				
Without HIV				
HIV+, CD4 <200	3.1	1.2-8.2		
HIV+, CD4>=200	1.0	0.5-1.8		
In PWH				
Soluble CD14, by quartiles	1.9	1.2-2.9		
Emphysema	2.7	1.0-5.7		

Sigel, et.al. AIDS 2017 Triplette, et.al. AIDS 2018

Screening harms in PWH


Crothers, et.al. ATS 2019

Modeling screening in PWH

- Adaptation of the Lung Cancer Policy Model
 - Monte Carlo microsimulation
 - Used to inform USPSTF guidelines
 - Included information from VACS cohort, SEER data and Kaiser Permanente Northern California HIV cohort
- Examined 12 combinations of screening criteria:
 - Age of initiation (45-55)
 - Age of termination (72 or 77)
 - Smoking pack-years (20 or 30)
- Excluded non-ART adherent PWH and CD4<500 cells/ μ L

Modeling screening in PWH

Kong et.al. AIDS 2018

Recommending screening in PWH

- PWH are "covered" under current USPSTF and CMS guidelines for screening services
 - Age 50-80 (77 for CMS)
 - 20+ pack-years of cigarette use
 - Currently smoking or quit within 15 years
- Consider HIV control, competing risks of mortality, and patient preferences in decision making
- CMS mandated "Shared Decision Making" provides opportunity to discuss
 - Personalized benefits and harms of screening
 - Screening in context of overall medical care and goals
 - Emphasize smoking cessation and/or abstinence

Kong et.al. AIDS 2018

Conclusions

- Lung cancer is a substantial cause of morbidity and mortality in PWH
- Among PWH currently smoking, successful cessation can vastly expand life expectancy
- Traditional methods of cessation are safe and effective in PWH
- Lung cancer screening is an effective tool for lung cancerspecific mortality reduction
- Main harm to consider in PWH is competing risks
- We need more design and evaluation (implementation) studies to support tailored methods for cessation and screening in PWH

Acknowledgement

This Mountain West AIDS Education and Training (MWAETC) program is supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) as part of an award totaling \$3,333,289 with 0% financed with non-governmental sources.

The content in this presentation are those of the author(s) and do not necessarily represent the official views of, nor an endorsement by, HRSA, HHS, or the U.S. Government.

